

Written and published for the Off-Trail Magazine publishers' Association by Jahn Foystar, 12 Glengariff Drive, Mulgrave, Victoria 3170, Australia FF $9: 8$

Number 36!
Actually it is really quite simple: the first seventeen issues of The W:Id Colonial Boy were published for SAPS between October 1962 and Jaly 196G. Than betwean Fabruary 1964 and June 1965 I publishad seventeen issues of a general fanzine called either Satura or The Gryphon, depending on the time of day. Then, in October 1966, I produced a combined issue of the two, and numbered it 35. There was an earlier version of TWCB 36, but that was only a letter of commont to Terry Carr on his fanzine called, er, well, it was a long time ago, and I'm sure you all know the name of Terry Carr's most recent general fanzine. Putting all this aside we come to the point, which is that OMPA seems a suitable place for this title. But don't knock it - TWCB was once mentioned in F\&SF's fanzine review column, and that's hard to beat.

I heven't had much contact with British Pandom for the last B years or so. In fact, I think this hrs been pretty much the case with most of Australian fandom. Another sobering thought is that I am, I suspoct, the only fan in Australia to whom the naturel given name to apply to the family name 'Harrison' is 'bill' (rather than 'Harry').

So much for chaery stuff. I think that my publishing schedule will be sixamonthly, rether than quarterly as it was in the hyperactive old days, but that is enough. Then again you might be lucky in that I will publish only annually. Pray.

This issua will be typic lly untypical. Cn the first page after this will begin an incredibly boring piace which will be of interest to one parson in OMPA if I am lucky. Howover, it seams to me a useful little p山ece of work even if the amount of typing was rather more than the idea was worth. And it goes, on for 0 pages. But don't woryy just throw this away.

Then, on what I call page ten, begins an article, as yet unwritten (fortunatoly), which deals with language and science fiction, partly inspired by David Masson's briaf incursion inta that field in SpECULATION recently.

Aftar that (and beginning on p geg 94) we have the jokes.
Hoping you are the same

THE 44 NENREST STARS and other numbers
I have always been interested in the exact way in which the stars are related (cosmically speaking....), but the amount of work involved in working it all out slowed down my initial impulse. A couple of weaks ago, however, I thought I would take a bit of time off and work some things out (aided by the fact that ? rocently-published list (in THE OBSERVER'S HANDBOOK 1970) provided all the details I needed). Wa in fustralia have perfected a remarkable device known as a 'computer'. It is rather too difficult to describe here, but it is sufficient, I think, to say that it does the edd-ups and the take-aways rather a ickiy. So I messed around a little and then, after a minute's work, oit squirtod the following pages of figures (and if you think this sart of thing shouldn't count for credit, then you've never had the \because ind of eyestrein I hava at the moment).

Lot me tell you about them. First of all consider Teble 2 (that's anicel) this lists the stars studied in this little exerciso, but gives pracious little else away. If you want to find out more, sou the abovemontionod DUSERVER'S HF.NDBODK.

Then wo have Tablu 1, which is the basic table. It lists the distances, in light years, between all the stars in the survey. You can find the distances easily by merely connecting the required vertical and horizontal numbers. Thus the distance between the sun and Barnard's Star is 5.9 light yoars, and the distance botween Sirius and Altair is 24 c9 light years. These distances are all accurate to about ane decimal place. (This is imposed by the date, not by the calculation.)

On the four pages following Table 2 is the listing of magnitudes, and this is a little more compicated. Reading down a column, you find the magnitude of the 43 other strre as seen from the star whose number appears at the head of a column. Thus the column headed 13. describes these stars as seen from a planet near 61 Cygni.

On the other hand, reading across a row, we find the magnitude of a particular star as se日n from the other 43 stars. This is fairly oasy to work out, as numbersacross tha rows don't vary greatly. As examples, we say that the megnitude of Sirfus from Ross 154 is 0.0 , whereas the magnitude of Ross 154 from Siriuz is 11.9 . There's rather more data there than anyono would want to handle.

I'm extending this system fin two ways. Firstly, I'm going to dump In a lot more data (roughly the brightest 300 stars seen from earth), which will anable me to look at. the neighbourhood a little more carefullye But I won't inflict the rosults on you (for a start, thet would tako about 700 pages....). Secondl: I'm going to simulate a spaceship heading off in a particular direction, and look back at the sun (and ahaad) to see what's there. (Didn!t I bell you I was also going to map tho sky at each point?) Joe Gibson did something like this in G^{2} a long timo ago, but I think it would be fun. finy requests?

Table 1

the wild colonial boy $36 / 3$

Star Nos．12．13．14．15．16．17．18．19．20．21．22．

13.	19.6										
14.	19.1	16.7									
15.	11.5	20.6	19.7								
16.	16.6	6.1	19.9	19.2							
17.	20.7	7.0	18：1	17.7	9.8						
18.	21.4	14.6	4.7	20.4	19.0	15.2					
19.	21.8	15.6	11.2	16.5	19.4	12.3	8.2				
20.	12.4	21.2	20.3	1.0	19.9	18.0	20.9	16.7			
21.	21.0	14.9	4.2	22.5	18.9	17.4	4.6	12.6	23.1		
22.	17.6	22.2	12.3	12.1	23.8	19.9	13.4	10.8	12.2	16.2	
23.	20，4	5.1	20.2	19.7	6.1	4.8	17.9	16.5	20.1	19.1	23.3
268	15.4	22.0	19.5	4.4	21.7	18.1	19.7	14.6	3.8	22.5	10.0
25.	：1． 1	16.1	15.0	22.5	15.4	21.2	17.5	22.7	23.4	14.3	22.5
26.	24.5	12.8	14.7	19.7	17.4	8.8	10.6	6.0	19.9	14.4	16.6
2% 。	4.6	21.2	22.5	15.4	17.2	23.1	24.8	25.8	16.3	23.9	22.2
「3．	24．0	17.7	7.0	21.5	22.3	17.2	3.9	7.4	21．9	7.8	12.9
29.	120．	18．8	26.2	12.5	14.2	17.7	26．4	24.0	13.0	27.3	23.3
70	18.2	20.1	10.0	24.1	21.6	24.0	13.9	20.7	24.9	10.0	19.4
37.	23.0	i8．6	4.5	24.2	22.5	20.6	6.1	13.9	24.8	3.7	16.2
3 L	18.6	19.8	10.3	24.5	21.4	23.9	14.0	20.9	25.4	10.0	20.0
73.	25.0	15.4	18.2	18.2	18.9	9.4	14.7	7.7	18.1	18.8	16.8
340	8.8	20.2	23.5	19.4	15.8	23.5	25.7	27.6	20.4	24.1	25.5
35.	18.8	10.3	24.8	21.4	5.0	12.8	23.8	23.5	22.1	23.8	27.8
36.	15.0	25.8	13.5	18.3	26.2	26.9	17.8	20.8	19.0	16.9	13.1
37.	26.2	13.8	10.9	24.9	19.4	14.5	6.6	10.5	25.3	8.5	19.1
38.	22.4	22.1	18.7	12.7	24.1	16.9	17.2	9.8	12.3	21.3	10.1
39.	8.4	23.7	25.9	10.7	19.6	22.9	27.4	25.6	11.3	28.0	21.4
40.	23.9	9.7	16.8	27.8	13.2	16.2	15.6	20.6	28.6	13.2	26.6
41.	20.6	13.8	17.7	27.5	14.3	20.4	18.6	24.2	28.4	15.1	27.3
42．	18.0	14.9	27.4	18.5	9.8	14.4	26.6	24.4	19.0	27.4	27.4
43.	25.5	7.4	22.1	24.1	10.8	6.6	18.9	17.5	24.4	20.3	26.1
44.	21.5	16.3	26.5	15.9	14.8	11.1	24.5	19.4	15.9	27.0	23.6

Star	Nos． 23.	24.	25.	26.	27.	28.	29.	30.	31.	32.	33.
24.	21.0										
25.	19.9	25.1									
26.	13.2	18.3	23.9								
27.	21.9	19.6	14.3	27.9							
$2 日$.	20.5	20.1	21.2	10.7	27.8						
29.	16.6	16.3	22.0	24.4	12.4	28.9					
30.	24.4	25.4	9.0	23.4	20.0	16.8	27.8				
31.	22.6	23.9	16.5	16.5	26.1	7.6	30.2	10.3		，	
32.	24.2	25.9	8.8	23.4	20.3	16.9	28.0	0.8	10.3		
33.	14.2	16.2	27.1	5.1	28.5	14.3	23.3	27.0	20.7	27.1	
34.	21.4	23.5	12.2	28.9	5.0	29.1	14.3	19.7	26.6	19.8	30.2
35.	8.4	24.2	19.0	21.2	18.5	27.0	13.4	26.0	27.4	25.8	22.0
36.	28.5	19.2	16.9	25.7	18.2	19.1	26.1	12.4	16.3	13.2	27.5
37.	17.0	24.1	20.9	9.1	29.3	7.5	29.3	18.5	10.2	18.3	14.1
38.	21.2	8.8	28.5	13.5	26.7	16.1	22．0	27.3	22.2	27.7	10.6
396	22.6	15.0	21.9	27.8	9.1	29.7	8.0	26.5	30.2	26.9	26.8
40.	14.5	29.2	13.9	18.5	24.9	19.0	26.5	16.9	16.4	16.2	22.7
41．	18.2	29.8	8.0	23.6	20.5	22.4	25.4	13.5	17.9	29.4	27.4
42.	11.5	21.4	22.8	22.8	17.9	29.3	8.5	29.5	30.8	29.4	22.1
43.	5.4	24.7	23.4	12.5	27.2	21.0	21.8	27.0	23.7	26.7	14.1
44.	11.8	16.7	27.7	17.5	23.5	26.0	12.9	31.8	30.0	31.9	14.8

Star Nos. 34.	35.	36.	37.	38.	39.	40.	41.	42 •	43.
35. 16.8									
36. 20.9	30.2								
37. 29.4	24.0	24.3				-	.		
38. 29.9	27.1	22.9	20.2						
39. 13.2	20.1	21.8	31.8	23.3					
40. 22.6	17.0	26.7	13.9	29.1	30.0				
41. 17.5	17.7	23.9	19.4	31.6	27.5	7.7			
42. 17.6	6.8	31.0	27.5	25.4	16.4	23.0	23.4		
43. 26.4	12.5	32.1	16.0	23.1	27.9	14.7	20.3	16.0	
44. 24.8	14.4	31.5	25.1	18.1	19.4	26.0	28.5	10.5	14.7

Iable 2

$\begin{aligned} & \text { Star } \\ & 1 . \end{aligned}$	Number	/ Star Identification The Sun	Star Number 23.	Star Identification Knager 60
2 。		Alpha Centauri	24.	Ross 614
3.		Barnard's Star	25.	BD-120 4523
4.		Wolf 359	25.	van Maanen's Star
5.		Lalande 21185	27.	Wolf 424
6.		Sirius	28.	CD-370 15492
7.		Luyten 726-8	29.	Groombridge 1618
8.		Ross 154	30.	ED-460 11540
98		Ross 248	31.	CD-490 13515
10.		Epsilon Eridani	32.	CD-440 11909
11.		Luyten 789-6	33.	Luyten 1159-16
12.		Ross 128	34.	Lalande 25372
13.		61 Cygni	35.	ADe 17415-6
14.		Epsilon Indi	36.	CC 658
15.		Procyon	37.	BD-15 6290
16.		Sigma 2398	38.	Omicron ${ }^{2}$ Eridani
17.		Groombridge 34	39.	BD +2002465
18.		Lacaille 9352	40.	Altair
19.		Tau Ceti	41.	70 Ophiuchi
20.		BD $+5^{\circ} 1668$	42.	AC $+79^{\circ} 3888$
21.		Lacaille 9352	43.	$B D+4304305$
22.		Kapteyn's Ster	44.	Stein 2051

Items $1,2,3,5,6,7,13,15,16,17,20,23,24,27,35,38,39,41,43,44$ ara known to be multiple.

If lost, please return to page two.
Baware: the following four pages are solid figures, no pretty triangles. the wild colonisl boy $36 / 5$

This table gives the apparent magnitudes of the 44 stars as seen from the vicinity of each of the others. Each column gives the magnitudes as seen from that particular star.

Star	1.	3.	-3.	4.	5.	5.	: 7.	0.	9.	10.	11.
1.		nol	1.1	\%. 6	1.8	1.9	2.0	2.1	2.3	2.4	2.4
20	0.1		1.0	1.5	2.0	1.8	2.1	1.4	2.7	2.5	2.3
3.	? 05	3.7		10.8	10.8	11.4	11.1	9.2	10.9	11.6	10.8
40	13.5	!3.7	14.3		12.1	13.8	15.1	15.0	15.2	15.1	15.4
¢.	$7 \cdot 5$	8.3	8.1	5.9		8.1	9.0	8.9	0.7	8.9	9.3
¢,	-105	- 3	-0.4	-1.4	-1.0		-1.1	0.0	-0.2	-1.7	-0.1
\%	12.5	12.9	13.2	13.7	13.0	12.8		13.4	12.9	11.3	12.1
E,	10.6	10:	9.4	11.6	11.7	11.9	11.4		11.5	12.0	10.6
\therefore	i2.2	12.0	12.4	13.2	12.9	13.1	12.3	13.0		12.7	12.3
0.	3.7	4.1	4.5	4.4	4.5	3.0	2.1	4.8	4.1		4.0
11.	12.2	12.4	12.2	13.3	13.4	13.1	11.4	11.9	12.2	12.5	
$\because=$	11.1	11.0	11.4	8. 9	11.0	11.3	12.3	12.0	12.4	12.3	12.6
$3 \cdot$	5.2	5.7	4.8	6.1	5.8	6.3	5.6	5.3	3.6	6.1	5.1
© 4.	4.7	4.2	4.8	5.6	5.8	5.3	4.3	4.1	5.6	5.1	3.9
Se	0.3	0.6	1.2	-0.3	-0.1	-1.4	0.9	1.6	1.2	0.3	1.6
"ち。	8.9	9.5	8.5	9.4	9.1	10.0	9.8	9.4	8.3	10.0	9.6
17.	0.1	8.8	8.4	9.0	8.7	8.9	8.1	8.9	4.1	8.4	8.2
18.	7.4	7.3	7.5	8.4	8.5	8.0	6.3	7.0	7.8	7.5	5.2
19.	3.5	3.0	4.1	4.4	4.5	3.6	1. 5	4.1	3.6	1.8	2.8
20.	9.8	10.0	10.6	9.2	9.4	8.1	10.2	11.0	10.6	9.6	10.9
21.	6.7	6.4	6.5	7.6	7.8	7.5	6.5	5.5	7.3	7.3	5.2
22.	8.8	8.6	9.4	9.1	9.4	7.6	8.2	9.5	9.7	7.9	9.2
23.	9.7	10.2	9.6	10.3	10.0	10.5	10.0	10.2	7.3	10.3	9.9
24.	11.3	11.6	12.1	11.2	11.4	9.3	11.4	12.4	12.0	10.6	12.3
25.	10.0	9.6	9.0	10.3	10.4	11.0	10.9	8.8	10.9	11.3	10.5
26.	12.4	12.7	12.7	13.2	13.2	12.7	10.9	13.8	11.5	11.6	11.3
27.	12.6	12.5	12.6	11.3	10.4	12.9	13.6	13.1	13.5	13.6	13.8
28.	8.6	8.5	8.9	9.5	9.6	8.9	7.3	8.5	8.9	8.2	7.1
29.	6.6	7.0	6.9	5.9	5.1	6.7	7.4	7.5	6.9	7.3	7.7
30.	9.4	8.8	9.0	9.8	10.1	10.1	9.8	8.1	10.3	10.3	9.5
31.	8.7	8.4	8.6	9.5	9.6	9.3	8.4	7.9	9.3	9.1	7.6
32.	11.2	10.6	10.7	11.6	11.8	11.8	11.6	9.7	12.0	12.0	11.1
33.	12.3	12.8	12.8	13.0	12.9	12.3	11.1	12.9	11.4	11.0	11.9
34.	0.5	8.5	8.3	7.8	7.8	9.0	9.5	8.7	9.2	9.6	9.5
35.	9.1	9.5	8.9	9.3	8.8	9.8	9.8	9.5	8.5	9.9	9.7
36.	11.0	10.4	11.2	11.0	11.4	10.9	11.4	11.1	12.1	11.5	11.6
37.	10.2	10.3	10.2	11.1	11.1	10.8	9.4	9.9	9.9	10.2	7.8
38.	4.4	4.7	5.1	4.8	4.9	3.5	3.6	5.3	4.6	2.2	4.7
39.	9.4	9.5	9.7	8.1	8.1	9.1	10.2	10.2	10.1	10.0	10.5
40.	0.3	0.9	0.1	1.5	1.4	1.7	1.1	-1. 2	0.6	1.6	0.2
41.	4.2	4.2	3.3	4.7	4.6	5.1	4.8	3.0	4.5	5.2	4.2
42.	11.0	11.4	11.0	10.9	10.3	11.4	11.6	11.6	10.6	11.6	11.7
43.	10.1	10.5	10.0	10.7	10.4	10.7	10.0	10.3	8.1	10.3	9.8
44.	11.1	11.6	11.5	11.2	10.8	11.2	11.3	11.9	10.4	11.0	11.6

the wild colonial boy $36 / 6$

Sta	Nos. 12.	13. 2.5	14.	15.	16. 2.5	17.6	1.8 2.6	19.	20.7 2.7	21. 2.7	22.
2.	2.0	2.7	1.7	2.5	2.0	2.9	2.2	i2.6	2.6	2.2	2.3
3.	11.1	10.5	11.0	11.0	10.5	11.2	11.1	11.6	11.9	1 C .9	11.9
4.	12.1	1.5 .3	15.3	13.8	14.9	15.3	15.5	15.4	14.1	15.5	15.0
5.	7.0	8.8	9.3	7.8	8.3	0.8	9.4	9.3	8.0	9.5	9.2
6.	-0.8	0.2	-0.3	-2.6	0.2	-0.1	-0.2	-0.7	-2.4	0.1	-1.8
7.	14.1	13.4	12.6	13.6	13.9	.13.0	12.0	10.2	13.6	13.0	12.7
8.	11.8	11.1	10.4	.12.3	11.5	11.8	10.7	11.7	12.4	10.0	12.0
9.	13.6	10.8	. 13.3	13.3	11.8	8.4	12.9	12.6	13.4	13.2	13.6
10.	4.9	4.7	4.2	3.8	4.9	4.1	4.0	2.2	3.9	4.6	3.2
11.	13.7	12.2	11.5	13.6	13.0	12.4	10.2	11.7	13.6	11.0	13.0
12.		12.4	12.3	11.2	12.0	12.5	12.6	12.6	11.4	12.6	12.2
13.	6.4		6.1	E. 5	3.8	4.2	8.8	5.8	6.6	5.8	6.7
14.	5.8	5.6		5.9	5.9	5.7	2.8	4.7	6.0	2.6	4.9
15.	0.3	1.6	1.5		1.5	1.3	1.6	1.1	-4.9	1.8	0.4
16.	9.7	7.5	10.1	10.1		B. 6	10.1	10.1	10.1	10.0	10.5
17.	9.4	7.1	9.1	9.1	7.8		8.7	8.3	9.1	9.0	9.3
18.	8.7	7.9	5.4	8.6	8.4	7.9		6.6	8.6	5.4	7.7
19.	4.8	4.1	3.4	4.2	4.6	3.6	2.7		4.2	3.6	3.3
20.	8.8	11.1	10.9	4.4	10.8	10.6	10.9	10.4		11.2	9.8
21.	7.8	7.4	4.4	8.0	7.6	\$. 4	4.5	6.7	8.0		$7 \cdot 3$
22.	9.5	10.1	8.7	8.6	10.1	9.7	8.9	8.4	8.6	9.3	
23.	10.7	7.6	10.7	10.6	811	7.5	10.4	10.2	10.7	10.5	11.0
24.	11.7	12.4	. 12.2	9.0	12.4	12.0	'12.2	11.6	8.6	12.5	10.7
25.	10.2	10.4	10.3	11.2	10.4	11.1	10.6	11.2	11.3	10.2	11.2
26.	13.6	12.2	12.5	13.1	12.8	11.4	11.8	10.5	13.1	12.4	12.7
27.	10.1	13.5	13.6	12.8	13.0	13.7	13.8	13.9	12.9	13.7	13.6
28.	9.7	9.1	7.1	9.5	9.6	9.0	5.8	-. 2	9.5	7.3	8.4
29.	6.1	7.1	7.8	6.2	6.5	7.0	7.8	7.6	6.3	7.9	7.6
30.	9.8	10.1	8.5	10.4	10.2	10.4	9.2	10.1	10.5	8.5	10.0
31.	9.6	9.2	6.1	5.7	9.6	9.4	6.7	8.5	9.8	5.7	8.9
32.	11.6	11.7	10.3	12.2	11.9	12.1	11.0	11.8	12.3	10.2	11.7
33.	13.3	12.3	12.6	12.6	12.7	11.2	12.2	10.8	12.5	12.7	12.5
34.	7.2	9.1	9.4	9.0	8.5	9.4	9.6	9.7	9.1	9.4	9.6
35.	9.5	8.2	10.1	9.8	6.6	8.7	10.0	10.0	9.8	10.0	10.4
36.	10.9	12.1	10.7	11.3	12.1	12.2	11.3	11.6	11.4	11.2	10.6
37.	11.3	9.9	9.4	11.2	10.7	10.0	8.3	9.3	10.2	8.9	10.6
38.	5.2	5.2	4.8	4.0	5.3	4.6	4.6	3.4	3.9	5.1	3.4
39.	8.0	10.2	10.4	8.5	9.8	10.1	10.5	10.4	8.6	10.6	10.0
40.	1.6	-0.3	0.9	2.0	0.3	0.8	0.7	1.3	2.0	0.3	1.9
41.	4.7	3.8	4.4	5.3	3.9	4.7	4.5	5.0	5.4	4.0	5.3
42.	11.1	10.7	12.0	11.2	9.8	10.6	12.0	11.8	11.2	12.0	12.0
43.	11.0	8.3	10.6	10.8	9.1	8.0	10.3	10.1	10.9	10.5	11.0
44.	11.6	11.0	12.0	10.9	10.8	10.2	11.9	11.4	10.9	12.1	11.8

Star	Nos. 23.	24.	25.	26.	.	28.	29.	30.	31.	32.	33
1.	2.8	2.8	2.8	3.0	3.0	3.1	3.1	3.1	3.1	3.2	3.2
2.	3.0	2.8	2.1	3.0	2.6	2.7	3.2	2.2	2.5	2.3	3.3
3.	11.1	12.1	18.?	11.7	11.4	11.7	11.8	11.1	11.4	11.1	12.1
46	15.3	14.6	15.0	15.7	13.6	15.8	14.3	15.4	15.8	15.5	15.8
5.	8.8	8.6	8.9	9.5	7.6	9.7	7.3	9.5	9.7	9.5	9.5
Fo	0.2	-2.6	1.4	-0.1	-0.1	-1. 1	-0.2	0.4	0.3	0.4	-0.2
78	13.6	13.4	14.2	12.0	14.5	12.2	14.4	14.1	13.3	14.1	12.5
9.	1.8	12.4	10.1	11.9	12.0	11.5	12.5	10.3	11.8	10.2	12.3
3	10.3	13.4	13.6	12.0	13.8	13.2	13.3	13.9	13.6	13.9	12.2
\%	4.7	3.4	5.4	3.5	5.4	3.9	5.1	5.3	4.8	5.3	3.2
\%	12.8	13.6	13.2	11.7	14.0	11.4	14.1	13.0	11.8	12.9	12.6
a	12.5	11.9	11.7	12.9	9.2	12.8	11.3	12.2	12.8	12.3	12.9
13.	3.5	6.6	6.1	5.5	6.6	6.2	6.3	6.5	6.3	6.4	5.9
14.0	6.0	5.9	5.3	5.3	6.2	3.7	6.5	4.4	2.7	4.5	5.7
So	1.5	-1.7	1.8	1.5	1.1	1.7	0.5	1.9	2.0	2.0	1.3
Sc	7.6	10.3	9.6	5.8	9.8	10.4	9.4	10.3	10.4	10.3	11.0
$\%$	6.2	9.1	9.5	7.6	9.7	9.0	9.1	9.7	9.4	9.7	7.7
H,	8.3	8.5	8.3	7.2	9.0	5.1	9.1	7.8	6.0	7.8	7.9
	4.2	4.0	4.9	2.1	5.2	2.5	5.0	4.7	3.9	4.7	2.6
a 2	10.9	7.2	11.2	11.8	11.4	11.0	9.9	11.3	11.3	11.4	10.6
21.	7.6	8.0	7.0	7.0	8.1	5.7	8.4	6.3	4.1	6.2	7.6
22.	10.1	8.2	10.0	9.3	11.1	8.8	10.1	9.7	9.3	9.7	9.4
23.		10.7	11.6	9.7	10.8	10.7	10.2	11.1	10.9	11.1	9.9
24.	12.3		12.7	12.1	12.2	12.3	11.8	12.8	12.6	12.8	11.8
25.	10.9	11.4		11.3	11.2	11.1	11.2	9.2	10.5	9.1	11.6
26.	12.2	13.0	13.5		13.9	11.8	13.6	13.5	12.7	13.4	10.2
27.	13.5	13.3	12.6	14.1		14.1	12.3	13.3	13.9	13.4	14.1
28.	9.4	9.4	9.5	8.1	10.1		10.1	9.1	7.2	9.0	8.6
29.	6.8	6.8	7.5	7.7	6.2	8.0		8.0	8.1	8.0	7.6
31.	10.5	10.6	8.3	16.4.	11.1	9.7	11.8		8.6	3.1	10.7
31.	9.6	9.7	8.9	8.9	9.9	7.2	10.2	7.9		7.9	9.4
32.	- 12.2	12.3	9.9	12.1	11.8	11.4	12.5	4.8	10.3		12.4
33.	12.1	12.4	13.5	9.9	13.6	12.1	13.2	13.5	12.9	13.5	
34.	9.2	9.4	8.0	9.8	6.1	9.9	8.3	9.0	9.7	9.0	9.9
35.	7.8	10.1	9.5	9.8	9.5	10.3	8.8	10.2	10.3	10.2	9.9
36.	12.3	11.5	11.2	12.1	11.3	11.4	12.2	10.5	11.1	10.6	12.2
37.	10.4	11.1	10.8	9.0	11.6	8.6	11.6	10.6	9.3	10.6	10.1
38.	5.1	3.2	5.7	4.1	5.6	4.5	5.2	5.6	5.2	5.6	3.5
39.	10.1	9.2	10.0	10.6	8.1	10.7	7.9	10.5	19.7	10.5	10.5
40.	0.5	2.1	0.4	1.1	1.7	1.1	1.9	0.9	0.8	0.8	1.5
41.	4.4	5.5	2.7	5.0	4.7	4.9	5.2	3.8	4.4	3.7	5.3
42.	10.1	11.5	11.6	11.6	11.1	12.2	9.5	12.2	12.3	12.2	11.6
43.	7.6	10.9	10.8	9.4	11.1	10.5	10.6	11.1	10.8	11.1	9.7
44.	10.3	12.1	12.2	11.2	11.8	12.0	10.5	12.5	12.3	12.5	10.8

	34.	35.	36.	37.	38.	39.	40.	41.	42.	43.	44.
1.	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.4	3.4	3.4	3.4
2.	2.9	3.3	2.3	3.0	3.2	3.1	3.1	3.0	3.5	3.5	3.6
3.	11.4	11.4	11.9	11.6	12.3	12.0	11.0	10.8	11.8	11.7	12.2
4 .	14.4	15.3	15.1	16.0	15.5	13.9	15.9	15.7	15.2	15.9	15.4
5.	8.2	8.6	9.3	9.8	9.4	7.7	9.6	9.4	8.4	9.4	8.9
6.	0.4	0.6	-0.3	C. 4	-1.1	-0.4	0.8	0.8	0.4	0.6	0.1
7.	14.7	14.4	14.1	12.9	12.9	14.6	14.1	14.4	14.5	13.9	14.1
8.	11.9	12.1	11.8	11.4	12.6	12.6	10.9	10.6	12.5	12.1	12.7
9.	13.9	12.5	14.2	12.8	13.3	13.9	13.0	13.5	12.9	11.4	12.6
10.	5.6	5.3	5.0	4.5	2.3	5.2	5.4	5.6	5.3	4.9	4.6
11.	14.0	13.6	13.6	10.6	13.3	14.2	12.5	13.1	13.9	12.9	13.8
130	10.7	12.3	11.8	13.0	10.6	12.8	12.5	12.2	13.0	12.6	11.1
130	6.5	5.0	7.0	5.6	6.7	6.8	4.9	5.6	5.8	4.3	6.0
14.	6.3	6.4	5.1	4.6	5.8	6.6	5.6	5.7	6.6	6.2	6.6
15.	1.5	1.7	1.4	2.0	0.6	0.2	2.3	2.2	1.4	1.9	1.0
16.	9.6	7.1	10.7	10.1	10.5	10.1	9.2	9.4	8.6	8.8	9.5
-	9.7	8.4	10.0	8.6	9.0	5.6	8.9	9.4	8.6	6.9	8.1
18.	9.1	8.9	8.3	6.1	8.2	9.2	8.0	8.4	9.2	8.4	9.0
19.	5.3	5.0	4.7	3.2	3.1	5.2	4.7	5.1	5.1	4.4	4.6
20.	10.9	11.1	10.7	11.4	9.8	9.6	11.6	11.6	10.7	11.3	17.3
21.	8.2	8.1	7.4	5.9	7.9	8.5	6.8	7.1	8.4	7.8	8.4
22.	10.3	10.5	8.8	9.6	0.3	9.9	10.4	10.4	10.4	10.3	10.1
23.	1.0 .8	8.8	11.4	10.3	10.8	10.9	9.9	10.4	9.4	7.0	9.5
24.	12.6	12.7	12.2	12.6	10.5	11.6	13.1	13.1	12.4	12.7	11.9
25.	9.9	14. 8	10.6	11.0	11.7	11.1	10.1	9.0	11.2	11.3	11.7
26.	13.9	13.3	13.7	11.4	12.3	13.9	13.0	13.5	13.4	12.1	12.9
27.	10.4	13.2	13.1	14.2	14.0	11.6	13.8	13.4	13.1	14.0	13.7
28.	10.2	15.0	9.2	7.2	8.9	17.2	9.2	9.6	10.2	9.4	9.9
29.	6.5	E. 4	7.8	8.1	7.5	5.3	7.9	7.8	5.4	7.4	6.3
30.	10.0	10.6	9.0	9.9	10.7	10.7	9.7	9.2	10.9	10.7	11.1
31.	10.0	10.0	8.9	7.9	9.6	10.2	8.9	9.1	10.3	9.7	10.2
32.	11.7	12.3	10.8	11.6	12.4	12.4	11.3	10.8	12.6	12.4	12.8
33.	13.7	13.1	13.5	12.1	11.5	13.5	13.1	13.5	13.1	12.1	12.2
34.		8.7	9.1	9.9	9.9	8.1	9.3	8.8	8.8	9.6	9.5
35.	9.3		10.5	10.0	10.3	9.7	9.3	9.4	7.3	8.6	8.9
36.	11.6	12.4		12.0	11.8	11.7	12.2	11.9	12.6	12.6	12.5
37.	11.6	11.1	11.2		10.8	11.8	10,0	10.7	11.4	10.3	11.2
38.	5.0	5.6	5.2	5.0		5.3	5.8	5.9	5.5	5.3	4.7
39.	8.9	9.9	10.0	10.9	10.2		10.7	10.5	9.4	10.6	9.8
40.	1.5	0.9	1.9	0.5	2.1	2.1		-0.8	1.5	0.6	1.8
41.	4.4	4.4	5.0	4.6	5.6	5.3	2.6		5.0	4.7	5.4
42.	14.1	9.0	12.3	12.0	11.9	10.9	11.6	11.7		10.9	10.0
43.	11.0	9.4	11.5	10.0	10.8	10.9	11.6	11.7	10.0		9.8
44.	11.9	10.7	12.4	11.9	11.2	11.4	12.0	12.2	10.0	10.8	

Errors: Thoro may occasionally bo an orror of 0.1 in magnitude duo to tho rapdid montal truncations by tho typist. I should liko to hoar about iny othor orrors, howover.

In thu May 1970 issuo of SPECULATION David I. Mexson devotus a good daal of spacc (soven and ono malf pages) to "Some Thoughts On Languagu In Sciuncu Fictiun". On ョbout the fourth pago Mr. Masson lists 5 'linguistic pitfalls' facing tho writor of scionco fiction who sooks to ropresent alion culturo. Those fow pages ari davotud to the third such pitfall:
"Thirdly, qrammar; it is inhorcntly improbablu that an aliun syntax could roscmblo the syntax of a Europoan language, and quito possiblo that it would bo totally difforont from that of any terrono 1 ลngungu." (p7go 18)
Mr. Masson goos on to discuss this with ruferonce tu his own storius, . Id to tho wark of Borges, Kormbluth and othors.

I expect that must roadors of this will have had sume uxporionco .ith loarning a non-Englisb languago. But if you aro liko me, that uxporicnon will almost cortainly bo limited to Europo n langungos. Evon 30, it can bo frusteating to tho beginnor in theso languages to loarn that one noods moro then a dictionary to got along - tho damnod foroighors don't evon havo words for somu quito straightfurward English oxprossions. Wo are, thoreforc, all aware of tho sort of problom which may occur.

Onc of tho occasiunal joys of lifo is to discover that ono's crude notion of how the universe fits togothor is actually closely linked with a notion which is highly devoloped and rusults from yuars of study on tho part of somu particularly bright porson (naturally; if you or I can think it up in ? fow momonts, thon to anynno ulsc it would reprosunt the work of at loast two yoars). So a coupld of yoars ago I discovorud that my idoa of tho way in which language influonces our porcoption of tho world, whon suitably tidiod up, is dignifiod with tho name 'the Sepir-Whorf hypothosis'. Actually tho Sapir-Whorf hypothosis is what I roally wantad to talk about horo, but this thing must be finishod this aftornoon, so I shall only bo able to begin.

Whorf's formul tion of the Sapir-Whorf tiypothosis is summarisod by Scioncc as boing 'that the structure of a porson's languago is a factor in thu way in which ho undorstands roality and bohavos with rospoct to it.' This suoms to mo ? simplification, but it is a good gunoral description.

But on to scionce fiction. Tho problom of alion languagos is hardly attacked t all in modern sciunco fiction (wull, the modern sciuncu fiction that I. road): purhaps this is buc:usu it is too difficult, and porhaps it is bocause writors are not perticularly inturostod in anything muru than moving thu plot along ("OK Harvcy, pass out tho Communicntor"). Whorf wrotu quito a lot about tho 'alion' languagos wo have hore on Earth, and I proposo to give a fow cxamplos to illustrato the point.

Firstly, ar illustration of gonoraldifforonces. I quoto from Language. Thought, and Roality (by BLW, M.I.T. Pruss, 1966/pb).

In tho important articlo "Tho Rolation of Habitual Thought and Bohavinur to Langunge", Whorf comprus English with Hopi.
"Our own 'timo' diffurs markodly from Hopi 'duration'. It is concoivod as liko a spaco of strictly limitod dimunsions, or somotimos as 玉iki a motion upon eacb a sp?ce, and cmployod as an intclluctual tool accordingly. Hopi 'duration' soems to bo inconcoivablo in turms of spaco or motion, being tho modo in which lifo diffors from form, and consciousnoss in toto from tho spatial olomonts of consciousnoss. Cortnin idcas burn of our own timoconcopt, such as that of absoluto simultancity, would bo dithor vory difficult to expross or impossiblc and dovid of moaning undor tho Hopi concoption, and would bo roplacod by oporational concopts." (pago 158)
Lator Whorf (in another ossay) summarisos the difforoncos botwoon tho Wo languagos in this way:
"What aro to English difforonces of timo are to Hopi difforences in the kind of validity." (page 213)
Then, in doaling with spocific instances, whorf illustratos tho sm-ll-scalo difforunces butwoun languagos on Earth: that, for oxamplo, Eskimo has throu words whoro English has tho one word 'snow'. Thore arc may examplos of such situations, as might bo oxpuctod, for ha unvironmunt holps to dotormino languago to some cxtont.

Then, whan onc comos to examino longor structuros - sentoncos, one finds strangor differances. Whorf quotes the two suntences "I push his hoad back" and "I drop it in wator and it floats" and romark that these aru rathur difforent in English (! page 235). Ho continuos: "But in Shawnou tho corruspunding statomonts aro clusoly similar, omphasising tho fact that analysis of naturo and classification of ovonts as liko or in the same category (logic) aro govorncd by grammar". And whorf makus it fairly clear just how the sentoncos pro rolatud in Shawnoo.

Rovorsing tho siturtion, ho takes tho sentancos "Tho boat is groundod on the boach" and "The boat is manned by picked mon" and shows that the Winobka: (Vancouver Island) cquivalonts nru dissimil ry and may bo translatod by 'It is on the beach pointwise is an ovent of canoo motion' and 'Tho boat hes a crew of pickud mon' (toguthur with a couplo of linos of gloss in an attompt to get across tho nuances).

Thu implications of this for 'alion spocen' aro considerablo. It can be as simplo ns Mr. Masson (or Borgus, for that matter) might choosu to mako it, but givon that alions havo an oxporionce tutally difforent from our own, wo should expoct a language far loss like our Standard Europaan languages ovon than Hopi or Shawnoc. To roly upon a vory simplo model (talling dirty jokos (Leinster) or plyying with tho olements (H. Buam Pipor)) suoms exiromoly optimistic.

Ono can't holp noticing that of the current writors, J.G. Ballard comes closest to gutting ecross the fucling of tho sentonce quotud above from pagc 213. But thon his aliens aru humans.

Finally, a word or twn about tho porcoption of roality. From pago 261:
"In parts of Now England, Porsian cats of a cort?in typo nro callod Coon cats, and this name has brod tho notion that thoy aru a hybric' between the eat and the 'coon' (racoun). This is ofton firmly boliuvod by pursons ignorant of biology, sinco thc struss of tho linguistic pattorn (animal-namo 1 modifying animal-name 2) cousos thom to 'suo' (or as the psychologists say 'projoct') objoctiva racoun quality as loc tod on the body of tho cat - they poitt. to itos bushy tail, lang heir, and so on."
I'm surc anyone could add to that situation without assistanco.
Of coursu tho quostion of how languago goos togethor and how it affocts our porception of reality has aspocts moro important than the naturo of small problems associated with some scionco fiction storios.
 zaquontly. In tho book montionud, Whorf dovotus soveral pagos to this subject, at tho samc timu indicating some arcas in which English might bo modifiod by borrowings from non-Europoan languages (with ultimato simplification in mind).

But in scionce fiction, it suems to be something which docsn't mattor.

That isn't exactly all I would have liked to have said. But on the other hand to dovolop tho subject at gruator length would have (i) consumad moro time than I presantly havo and (ii) assumed that some mumbers at loast of OMPA would be interestod (and that ain't necossarily so). But tho colloction of Whorf's writing cited is available, so this is some sort of introduction.

AUSTRALIAN CENSORSHIP:
This subject is much discussed but littlo understood. WCB proudly roprints a $V^{*} i * t * a *$ documont - a spocch by tho ministor in chargo. wall, tho first opisode of a serial, anyway. (from Parliamentary Dobatos 27,2,1, 3372)

In tho past fow months tho subject of Australian consorship of both films and litoraturo has been widoly discussed in nowspapers and magazincs and on radio and television. Thorc havo boon numorous moctings on consorship at univorsitios and othor placos. Thore havo boon casus of pickoting of theatres by an organisod movomont against consorship. It has become cloar that tho Australian public now has a livolior intorost in the subjoct than at any provious time. Bocauso the community is so cloarly indicating its wish to bo moro concernod with tho principlos and systoms of Australian consorship, I docidod that I should make a statemont to tho Houso on the present censarship position and on the Governmont's attituda to a controversial and sometimes emotional matter. (stay tunad for anothor para or two in throu months'. time....)
tho wild colonial boy $36 / 12$

